
 Quasilocal equilibrium condition for black ring

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

JHEP12(2009)040

(http://iopscience.iop.org/1126-6708/2009/12/040)

Download details:

IP Address: 80.92.225.132

The article was downloaded on 01/04/2010 at 13:19

Please note that terms and conditions apply.

The Table of Contents and more related content is available

Home Search Collections Journals About Contact us My IOPscience

http://www.iop.org/Terms_&_Conditions
http://iopscience.iop.org/1126-6708/2009/12
http://iopscience.iop.org/1126-6708/2009/12/040/related
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J
H
E
P
1
2
(
2
0
0
9
)
0
4
0

Published by IOP Publishing for SISSA

Received: September 18, 2009

Accepted: November 22, 2009

Published: December 11, 2009

Quasilocal equilibrium condition for black ring

Dumitru Astefanesei, Maria J. Rodriguez and Stefan Theisen

Max-Planck-Institut für Gravitationsphysik, Albert-Einstein-Institut,

14476 Golm, Germany

E-mail: dumitru@aei.mpg.de, maria.rodriguez@aei.mpg.de,

stefan.theisen@aei.mpg.de

Abstract: We use the conservation of the renormalized boundary stress-energy tensor

to obtain the equilibrium condition for a general (thin or fat) black ring solution. We

also investigate the role of the spatial stress in the thermodynamics of deformation within

the quasilocal formalism of Brown and York and discuss the relation with other meth-

ods. In particular, we discuss the quantum statistical relation for the unbalanced black

ring solution.

Keywords: Black Holes in String Theory, Black Holes

ArXiv ePrint: 0909.0008

c© SISSA 2009 doi:10.1088/1126-6708/2009/12/040

mailto:dumitru@aei.mpg.de
mailto:maria.rodriguez@aei.mpg.de
mailto:stefan.theisen@aei.mpg.de
http://arxiv.org/abs/0909.0008
http://dx.doi.org/10.1088/1126-6708/2009/12/040


J
H
E
P
1
2
(
2
0
0
9
)
0
4
0

Contents

1 Introduction 1

2 Quasilocal stress-energy tensor 3

3 Unbalanced black ring 6

3.1 The model 7

3.2 Balance condition 8

4 Stresses and quantum statistical relation 10

4.1 Gravitational tension 10

4.2 Generalized quantum statistical relation 11

5 Discussion 12

A Stress tensor for boosted black string 14

1 Introduction

A basic known fact of general relativity is that there is no concept of local energy for

the gravitational field. Due to the equivalence principle it is possible to eliminate every

observable effect of the gravitational field in a suitable spacetime neighborhood.1 Therefore,

in general relativity the gravitational energy and momentum have non-local validity.

One of the most powerful frameworks for computing conserved quantities in general

relativity is the ‘quasilocal’ formalism of Brown and York [1]. The basic idea in [1] is to

define a ‘quasilocal’ energy inside a given finite region (rather than defining the energy at

a point). Thus, an appealing feature of quasilocal energy is its direct derivation from the

gravitational action for a spatially bounded region.

In this paper, we consider the quasilocal energy as applied to spacetimes that are

asymptotically flat in spacelike directions. The spatial infinity — the part of infinity which

is reached along spacelike geodesics — is represented by one point in the Penrose diagram

of conformal compactification for Minkowski space. In this context, it is better to visualize

it as the hyperboloid of spacelike directions (it is isometric to the unit 4-dimensional de

Sitter space) — a detailed discussion on the role of boundary (conditions) for holography

in flat spacetimes can be found in [2].

The relationship with the standard ADM [3] treatment at spatial infinity was presented

in [1, 4]. The quasilocal energy agrees with the ADM energy in the limit so that the spatial

boundary is pushed to infinity.

1Even if the gravitational field can be measured by the geodesic deviation of two observers, a single

observer can not distinguish it from kinematical effects.
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It is also well known that the gravitational action contains divergences even at tree-level

— they arise from integrating over the infinite volume of the spacetime. For any variational

principle it is possible to add to the action terms that depend on the fixed boundary data.

Thus, the action can be regularized by supplementing the quasilocal formalism by boundary

terms (counterterms) (see [5] for asymptotically flat spacetimes,2 [9] for asymptotically AdS

spacetimes, [10] for a general dilaton potential and, e.g., [11] for AdS gravity with higher

derivative terms) that depend on the intrinsic geometry of the regularizing surface. In this

way the difficulties associated with the choice of a reference background are avoided.

Brown and York have also proposed a quasilocal stress-energy-momentum of gravi-

tational field which is obtained by varying the action with respect to the metric on the

boundary of the quasilocal region.

A concrete expression for the regularized ‘boundary’ stress-energy tensor when the

spatial boundary is pushed to infinity was given in [12] — it was obtained from varying the

action supplemented with the counterterms. This provides not just a concrete method to

compute the conserved charges and to study thermodynamical properties of black objects,

but also gives the answer in a form which is holographic in spirit.

It is important to emphasize that, despite the similarity between the definitions of

the boundary stress tensor (τ ij) and the standard matter stress tensor (T µν), they have

completely different physical interpretations [1].

First of all, it should be noticed that τ ij characterizes the entire system, including

contributions from both the gravitational field and the matter fields. On the other hand, for

a background which satisfies the equations of motion for gravity and matter, the boundary

stress tensor satisfies an approximate local conservation law [1]

Diτ
ij = −T nj (1.1)

Here, Di is the covariant derivative of the induced metric on the boundary and T nj = nµT
µj

(nµ is the normal on the boundary). The source term on the right-hand side vanishes

under the assumptions that matter fields fall off sufficiently fast at infinity (no matter in a

neighborhood of the boundary). Obviously, when the component of T nj in the direction of

a Killing vector ξi vanishes, the matter fields do not play any role in defining the conserved

charge associated with this Killing vector.

One would like to understand how this formalism is generalized to unbalanced solutions

— this is especially interesting in connection with the black ring/blackfold approach [13–

15]. In the black ring/blackfold approach, one can construct new black hole solutions in

higher dimensions by using (thin) black branes curved into a specific shape. Thus, an

important question is if the solution remains regular after bending.

We will see that for the unbalanced solutions there can also exist a source term in the

right-hand side of (1.1) due to the conical singularities in the metric. Based on this obser-

vation, we will use the conservation of the boundary stress tensor to obtain the equilibrium

condition for a general (thin or fat) black ring solution (the dynamic balance condition for

a thin black ring in five dimensions was first observed in [16, 17] and obtained in higher

dimensions in [13]).

2A rigorous justification for using these counterterms can be found in [6] (see also [7, 8]).
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In this paper, we also carry out some preliminary investigation of the thermodynamics

of the unbalanced solutions and present a ‘generalized’ quantum statistical relation. In

particular, we use the quantum statistical relation to read off the term due to the stresses.

In the limit for which this term vanishes, we will obtain the dynamic balance condition,

or, in other words, a ‘balanced’ ring solution with the usual quantum statistical relation.

This can be regarded as an important check of our proposal that the equilibrium condition

can be obtained from the conservation of the renormalized boundary stress tensor.

At this point it is worth to comment on the relation with the previous literature. The

fact that the ring is not in equilibrium should be reflected in a non-conservation of the

stress tensor was first pointed out in [13]. The thin black ring is approximated by a black

string (a black 1-brane)3 and so, at large distances, the gravitational field is generated by

a source with a distributional stress-energy tensor which has non-zero components only

along directions tangent to the worldvolume. The main observation in [15] is that, for a

thin brane, the equations of motion [18] can be obtained by demanding the conservation

of the stress-energy tensor. Thus, the absence of the external forces in the equations of

motion is equivalent with the conservation of the stress-energy tensor.

However, our situation is slightly different. First of all, we keep the conical singularity

in the boundary and so the ‘shape’ of the boundary is changed — we compute the boundary

stress tensor with respect to this metric.4 More importantly, we do not have to use the thin

ring approximation, our computations are done for a general black ring solution. The non-

conservation of the boundary stress tensor in our case should be related to the modification

(the existence of conical singularities) of the standard asymptotics for flat spacetimes.

Consistent with the point raised above, it is important to emphasize that the stress

tensor considered in [13, 15] is defined in the bulk. To make the connection with this work

more concrete we note that, in principle, one could also consider the quasilocal boundary

for a foliation with the ring topology hypersurfaces. If such an analysis is possible, it should

capture the information about the stress of the conical disk for the unbalanced solution.

The structure of the paper is the following: in the next section we describe the quasilo-

cal formalism and set the conventions for the rest of the paper. In section 3 we obtain the

balance condition by using the energy conservation of the boundary stress tensor. In sec-

tion 4 we propose a generalized quantum statistical relation for the unbalanced black ring

and check consistency with the proposal in the previous section. Finally, we conclude with

a discussion of our results. Some details about the boundary stress tensor of a boosted

black string are collected in appendix.

2 Quasilocal stress-energy tensor

In this section we present a review of the quasilocal formalism, set the conventions for the

rest of the paper, and comment on the role of energy conservation in understanding the

unbalanced solutions.

3A ring can be obtained by bending a boosted black string [17].
4In ADM formalism, a computation of the energy for a background with a boundary which contains a

conical singularity was presented in [19] — despite this similarity, our computations are not related in any

way with the ones presented in this paper.
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In a very basic sense, gravitational entropy can be regarded as arising from the Gibbs-

Duhem relation applied to the path-integral formulation of quantum gravity [20]. In

the semiclassical limit this yields a relationship between gravitational entropy and other

relevant thermodynamic quantities, such as mass, angular momentum, and other con-

served charges.

The conserved charges of asymptotically flat black holes are usually computed by using

Hamiltonian methods. The gravitational Hamiltonian must have well defined functional

derivatives and must preserve the boundary conditions on the fields. Since there is a

formal connection between total energy and time translation, it is natural to expect that

the gravitational mass should be related to the value of the gravitational Hamiltonian —

this idea is at the basis of defining both, the ADM and quasilocal, masses.

The quasilocal energy is the value of Hamiltonian which generates unit magnitude

proper-time translations in a timelike direction orthogonal to spacelike hypersurfaces at

some fixed spatial boundary [1] — it agrees with the ADM energy in the limit that the

spatial boundary is pushed to infinity.

However, it is important to point out a key difference between the quasilocal mass and

the ADM mass [4]. In ADM formalism the hypersurfaces are Cauchy surfaces and so the

data on one slice completely determines the future evolution of the system. That is not the

case for the quasilocal formalism: the hypersurfaces with which we foliate the spacetime

are not Cauchy surfaces.

In this paper, we are interested in 5-dimensional stationary solutions. We choose

the observers that are stationary with respect to the boundary, i.e., their five-velocity is

perpendicular to the normal. These are the observers that will not stretch or squash the

boundary, which would affect the energy. Therefore, we define the asymptotically flat

spacetimes to have the following fall off behavior [21]

ds2 = gµνdx
µdxν ≃

(

−1 +
8MADM

3πr2
+ O(r−3)

)

dt2 −
(

8Jφ sin2 θ

πr2
+ O(r−3)

)

dtdφ

−
(

8Jψ cos2 θ

πr2
+ O(r−3)

)

dtdψ

+
(

1 + O(r−1)
) (

dr2 + r2
(

dθ2 + sin2 θdφ2 + cos2 θdψ2
))

(2.1)

having the spherical spatial infinity, S3
∞. We use Greek indices to denote the

bulk coordinates.

The validity of this metric in the asymptotic region could always be used to define

mass and angular momenta, MADM and Ja. We note that the quasilocal definitions are

more powerful because they do not involve a particular coordinate system.

To define the conserved charges within quasilocal formalism, we use the divergence-free

boundary stress tensor proposed in [12]:

τij ≡
2√
−h

δI

δhij
=

1

8πG

(

Kij − hijK − Ψ(Rij −Rhij) − hij�Ψ + Ψ;ij

)

(2.2)

where Ψ = c√
R , hij is the induced boundary metric, and Rij its Ricci scalar. Note that

the constant c =
√

2,
√

3/2 for a boundary topology S2 ×R×R or S3 ×R, respectively.
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The renormalized action I in five dimensions considered in the definition of this stress

tensor, including the counterterms, is of the form

I =
1

16πG5

∫

M
R
√−g d5x+

ǫ

8πG5

∫

∂M
(K − c

√
R)

√
−hd4x (2.3)

where K is the extrinsic curvature of ∂M , ǫ = +1 where ∂M is timelike or ǫ = −1 where it

is spacelike, and h is the determinant of the induced metric on ∂M . Also, the counterterm

considered here involves the Ricci scalar R of the induced metric on the boundary hij .

As we have already mentioned in the Introduction, this stress tensor is covariantly

conserved (with respect to the boundary metric) for vacuum regular solutions. When there

are also matter fields, the equation (1.1) expresses the local conservation of the boundary

stress-energy up to the flow of matter energy-momentum across the boundary.

The boundary metric can be written, at least locally, in ADM-like form

hijdx
idxj = −N2 dt2 + σab (dya +Na dt)(dyb +N b dt) (2.4)

where N and Na are the lapse function and the shift vector respectively and {ya} are the

intrinsic coordinates on the hypersurface Σ. The boundary conditions for the quasilo-

cal Hamiltonian include fixation of the boundary spatial metric, lapse function, and

shift vector.

Provided the boundary geometry has an isometry generated by a Killing vector ξi, a

conserved charge

Qξ =

∮

Σ

d3y
√
σniτij ξ

j (2.5)

can be associated with the hypersurface Σ (with normal ni). Physically this means that a

collection of observers on the hypersurface whose metric is hij all observe the same value

of Qξ provided this surface has an isometry generated by ξi.

The mass and the angular momenta are

M =

∮

Σ

d3y
√
σni τij ξ

j
t , Jφ =

∮

Σ

d3y
√
σni τij ξ

j
φ , Jψ =

∮

Σ

d3y
√
σni τij ξ

j
ψ

where the normalized Killing vectors associated with the mass and angular momenta are

ξt = ∂t, ξφ = ∂φ, and ξψ = ∂ψ respectively. As it was recently explicitly shown in

several concrete 5-dimensional black objects examples [22], the conserved charges from

the quasilocal formalism match the ADM charges exactly.

Armed with this formalism we will obtain the balance condition for a general black

ring solution in the next section. As an warm-up exercise let us discuss Myers-Perry black

hole [23] (with one angular momentum) in Boyer-Lindquist coordinates:

ds2 = −dt2 + Σ

(

r2

∆
dr2 + dθ2

)

+ (r2 + a2) sin2 θ dψ2 + r2 cos2 θ dφ2

+
m

Σ

(

dt− a sin2 θ dψ
)2

(2.6)
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where

Σ = r2 + a2 cos2 θ, ∆ = (r2 + a2)r2 −mr2 (2.7)

and m is a parameter related to the physical mass of the black hole, while the parameter

a is associated with its angular momentum.

The metric above depends only on two of the coordinates: 0 < r <∞ and 0 < θ < π/2

and is independent of time −∞ < t < ∞, and the angles 0 < φ,ψ < 2π. Asymptotically

the metric approaches the flat background

ds2 ≃ −dt2 + dr2 + r2(dθ2 + cos2 θdφ2 + sin2 θdψ2) (2.8)

The non-vanishing components of the stress tensor (2.2) when c =
√

3/2 are

τtt =
1

8πG5

(

−3

2
m

1

r3
− 5

3
a2 cos 2θ

r3
+ O(1/r5)

)

τtψ ≡ τψt =
1

8πG5

(

−2 am
sin2 θ

r3
+ O(1/r5)

)

τθθ =
1

8πG5

(

2

3
a2 cos 2θ

r
+ O(1/r3)

)

τφφ =
1

8πG5

(

2

3
a2 (1 + 2 cos 2θ) cos2 θ

r
+ O(1/r3)

)

τψψ =
1

8πG5

(

2

3
a2 (−1 + 2 cos 2θ) sin2 θ

r
+ O(1/r3)

)

(2.9)

The stress-energy conservation law can be easily checked. For a generic boundary met-

ric (2.8) (with r constant) and a stress tensor with non-vanishing components as in (2.9),

the only non-trivial term is

Diτiθ = [∂θ (sin θ cos θ τθθ) + tan2 θ τφφ − cot2 θ τψψ](cos θ sin θ)−1 (2.10)

By replacing the explicit values from (2.9) one can easily check that Diτiθ vanishes.

This term is also playing an important role in our analysis of unbalanced solution.

We will see in the next section that this term does not vanish when the boundary met-

ric contains conical singularities — the ‘non-conservation’ of the boundary stress tensor

measures the deviation from the standard boundary conditions. The presence of conical

singularities in the boundary metric is not, however, a drastic change (it is not similar,

e.g., with changing the asymptotics to Anti-de Sitter) and this is why we can still use the

boundary stress tensor (2.2) to study this type of spacetime.

3 Unbalanced black ring

In this section, we explicitly check the conservation of the regularized stress-energy tensor

for the unbalanced black ring. We also show how the conservation law yields the dynamical

equilibrium condition for any, thin (black ring solutions with parameters ν, λ ≪ 1) or fat

(those that are not thin), singly spinning black ring.5

5Note that this classification is equivalent to the one employed in finding the higher dimensional thin

black rings of [13] with r0 ≪ R, where r0 is the radius of S2 and R is the radius of S1. As shown

– 6 –
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3.1 The model

Using the conventions in [16] we can write a general line element as

ds2 = −F (x)

F (y)

(

dt +R
√
λ ν (1 + y) dψ

)2

(3.1)

+
R2

(x− y)2

[

−F (x)

(

G(y) dψ2 +
F (y)

G(y)
dy2

)

+ F (y)2
(

dx2

G(x)
+
G(x)

F (x)
dφ2

)]

with

F (ξ) = 1 − λξ , G(ξ) = (1 − ξ2)(1 − νξ) (3.2)

R,λ and ν are parameters whose appropriate combinations give the mass and angular

momentum. The parameters ν and λ have the range 0 ≤ ν < λ < 1. Asymptotic spatial

infinity is reached as x→ y → −1.

This is a vacuum solution of Einstein equations in five dimensions. To obtain a

Lorentzian signature, the variables x and y are constraint to take values in

− 1 ≤ x ≤ 1 , −∞ < y ≤ −1 , λ−1 < y <∞ (3.3)

Note that for y ∈ [λ−1, ν−1] the coordinate t becomes spacelike and so t and y

are interchanged.

It is also important to emphasize that, since there are conical singularities, this is not

a regular solution. Once the conical singularities are eliminated, we get a physical regular

solution (black hole or black ring).

As shown in [16], in order to balance forces in the ring one must identify ψ and φ with

equal periods

∆φ = ∆ψ =
4π
√

F (−1)

|G′(−1)| =
2π

√
1 + λ

1 + ν
(3.4)

This eliminates the conical singularities at the fixed-point sets y = −1 and x = −1 of the

Killing vectors ∂ψ and ∂φ, respectively.

However there still is the possibility of conical singularities at x = +1. These can be

avoided in either of two ways. Fixing

λ = λc ≡
2ν

1 + ν2
(black ring) (3.5)

makes the circular orbits of ∂φ close off smoothly also at x = +1. Then (x, φ) parametrize a

two-sphere, ψ parametrizes a circle, and the solution describes a black ring. Alternatively,

if we set

λ = 1 (black hole) (3.6)

in [16] a redefinition of the form ν = r0 sinh2 σ/R and λ = r0 cosh2 σ/R gives the relationship between the

parameters of the black string and the black ring while changing the coordinates r = −RF (y)/y, cos θ = x,

z = Rψ and taking the R → ∞ limit.

– 7 –
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then the orbits of ∂φ do not close at x = +1. Then (x, φ, ψ) parametrize an S3 at

constant t, y. The solution is the same as the spherical black hole of [23] with a single

rotation parameter.

Both for black holes and black rings, |y| = ∞ is an ergosurface, y = 1/ν is the event

horizon, and the inner, spacelike singularity is reached as y → λ−1 from above.

3.2 Balance condition

The equilibrium condition is a constraint on the parameters of the unbalanced ring solu-

tion [16] which is equivalent with the removing of all conical singularities in the metric.

A nice physical interpretation was given in [17]: the absence of conical singularities

is equivalent with the equilibrium of the forces acting on the ring. A black ring can be

obtained by bending a boosted black string. Thus, the linear velocity along the string

becomes the angular velocity of the black ring. The equilibrium of centrifugal and gravi-

tational forces imposes a constraint on the radius of the ring R, the mass, and the angular

momentum. In this way one can see that, indeed, just two parameters are independent in

the solution of the neutral black ring. A discussion of black string within the quasilocal

formalism is presented in the following section.

The previous observation was used in [16, 17] and [13] to obtain a balanced condition

for the thin rings. By using the conservation of the boundary stress tensor (2.2), we obtain

the balance condition for a general (thin or fat) black ring solution.

The quasilocal formalism is employed in the asymptotic region and so only conical

singularities in the boundary can be detected in the boundary stress tensor. Therefore,

one should choose a general enough foliation so that the induced metric of the boundary

contains this non-trivial information.

Unlike in the previous literature where the conical singularity in the boundary x = y =

−1 was eliminated first, we will just get rid of the conical singularity in the bulk. Thus, to

avoid the conical singularity in the bulk, one must identify ψ and φ with an equal period

∆φ = ∆ψ =
4π
√

F (+1)

|G′(+1)| = 2π

√
1 − λ

1 − ν
(3.7)

For the reasons mentioned in section 2 and since the computations simplify, we prefer to

change the coordinates as follows:

x→ −1 +
2m cos2 θ

(r2 + a2 cos2 θ)
, y → −1 − 2m sin2 θ

(r2 −m+ a2 cos2 θ)
(3.8)

In order to get an asymptotic metric of the form (2.8), we work in the following gauge:

m =
(1 + λ)2R2

1 + ν
, a =

(1 + λ)1/2R(λ− 1 + ν + 3λν)
1

2

(1 + ν)
(3.9)

To gain some intuition about these coordinates, let us consider a 5-dimensional spinning

black hole with one angular momentum — it corresponds to λ = 1 in (3.1). By the coordi-

nate transformation (3.8) the solution takes exactly the form of (2.6) with the additional

– 8 –
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identification of parameters,

m =
4R2

(1 + ν)
, a =

23/2 R
√
ν

(1 + ν)
(3.10)

Now, let us consider the unbalanced solution (3.1) with the conical singularity in the bulk

removed by (3.7). In the coordinates (3.8) the asymptotic form of the metric is

gtt = −1 +
2R2λ(1 + λ)

(1 + ν)

1

r2
+ O(1/r4) (3.11)

gtψ =
2R3(1 + λ)2

√

λν (1 − λ)

(1 − ν2)

sin2 θ

r2
+ O(1/r3) (3.12)

grr = 1 + O(1/r2) (3.13)

gθθ = r2 + O(1) (3.14)

grθ = O(1/r3) (3.15)

gφφ =
(1 − λ)(1 + ν)2

(1 − ν)2(1 + λ)
r2 cos2 θ + O(1) (3.16)

gψψ =
(1 − λ)(1 + ν)2

(1 − ν)2(1 + λ)
r2 sin2 θ + O(1) (3.17)

and the non-vanishing stress tensor components are

τtt =
1

8πG5

(

−R
2(1 + λ)(9λ(1 + ν) − 10(−1 + λ− 2ν) cos 2θ)

3r3(1 + ν)2
+ O(1/r4)

)

(3.18)

τψt =
1

8πG5

(

−4R3(1 + λ)5/2
√
λν

(1 + ν)2
sin2 θ

r3
+ O(1/r4)

)

(3.19)

τθθ =
1

8πG5

(

4R2(1 + λ)(1 − λ+ 2ν) cos 2θ

3r(1 + ν)2
+ O(1/r3)

)

(3.20)

τφφ =
1

8πG5

(

4R2(1 − λ)(1 − λ+ 2ν) cos2 θ(1 + 2 cos 2θ)

3r(1 − ν)2
+ O(1/r3)

)

(3.21)

τψψ =
1

8πG5

(

4R2(1 − λ)(1 − λ+ 2ν)(−1 + 2 cos 2θ) sin2 θ

3r(1 − ν)2
+ O(1/r3)

)

(3.22)

We find that, due to the existence of conical singularities, this stress tensor is not covariantly

conserved with respect to the boundary metric (2.8) (with r constant). In other words,

the fact that the stress tensor is not conserved is reflected in the existence of additional

stresses that deform (to some extent) the boundary metric.

We observe that the stress tensor is only conserved (is equivalent with the absence of

external forces) when

λ =
2ν

1 + ν2
(3.23)

which is the dynamic equilibrium condition for black ring. We expect that this will also be

confirmed for other unbalanced solutions such as the doubly spinning black ring [24] multi

black hole solutions [25–27] and the new black holes of [28].

– 9 –
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4 Stresses and quantum statistical relation

In this section we present a ‘generalized’ quantum statistical relation for the unbalanced

black ring. We also explicitly obtain the dynamic equilibrium condition for the black ring

in the limit for which the term due to the stresses vanishes.

For completeness, we start by presenting a brief review of the gravitational tension

and discussing the black string solution (including the boundary conditions that permit

variations of its length) (see e.g. [29] and references therein). In the second part of this

section we compute the action of the unbalanced black ring and show that it satisfies a

generalized quantum statistical relation.

4.1 Gravitational tension

We start by examining a boosted black string with a fixed length L — the stress tensor

components are presented in the appendix. We obtain

lim
r→∞

√
−h
(

c
√

R−K
)

=
r0
2

sin θ + O(1/r)

where r0 is the event horizon and σ the boost parameter in the black string solution (A.1),

so the total action for the black string is

I ≡ β G = β
r0

4G5

L (4.1)

where β = 1/T is the inverse of the temperature.

The other thermodynamical quantities, the linear mass density, the temperature, and

the event horizon area per unit length are

M

L
=

r0
4G5

(1 + cosh2 σ) , T =
(cosh σ)−1

4πr0
,

A
L

= 4πr20 cosh σ (4.2)

The quantum statistical relation contains an additional term

G− (M − T S) = −r0 L sinh2 σ

4G5

(4.3)

This non-trivial term can be interpreted as a new term, v p, where the linear momentum p

and the boost velocity v are

p =
r0 L

4G5

cosh σ sinhσ , v = tanhσ (4.4)

The boost velocity appears as an intensive parameter in the first law.

It is important to emphasize again that by bending a string to form a circle one can

obtain a black ring with the horizon topology S1×S2. One way to keep this configuration in

equilibrium is to add angular momentum such that the repulsive centrifugal force balances

the tension and gravitational self-attraction.

Since the boost velocity becomes the angular velocity after bending, one could intu-

itively guess that the equilibrium is obtained for some specific values of the boost parameter.
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Indeed, as observed in [16, 17] the equilibrium condition for a thin black ring is equivalent

with demanding a vanishing tension for the black string — in analogy with the ADM defi-

nition, within the quasilocal formalism the tension is proportional to the τzz component of

boundary stress tensor. Using the value of τzz from the appendix, we observe that only the

tensionless black string with a boost parameter sinh2 σ = 1 is a black ring in the thin limit.

The tension of a spacetime arises as an extension of the usual ADM gravitational

charges when there are additional parameters that characterize the spacetime at infin-

ity [30]. In this case, one can obtain two solutions with slightly shifted values of the

parameters but with the same asymptotics [31–33].

A general definition for gravitational tension was given in [34] — however, as in the

case of gravitational energy, it can only be defined with respect to a reference background.

A definition of gravitational tension by using the renormalized boundary stress tensor is

clearly more advantageous since the difficulties associated with the choice of a reference

background are avoided.

Let us also briefly comment on the case of a static black string with the boundary

conditions that permit variations of its length [31]. In this case, there is an additional

‘work’ term in the first law given by the product of the tension and the variation of the

length at spatial infinity [30].

Since the computation of the boundary stress tensor for the static black string is similar

with the one in Apendix, we do not present the results here. However, as expected, our

results match the results in [31] and the quantum statistical relation contains a new term

due to the tension.

More importantly, it was shown in [31] that, when the solutions are characterized

by more than one modulus, the result can be simply stated in analogy with the physics

of elastic materials [35]: the role of stresses is played by a tension tensor. Within the

quasilocal formalism, the strain tensor should encode the changes in the boundary metric:

in shape (e.g., when there exist conical singularities) and/or in size.

4.2 Generalized quantum statistical relation

We have shown in section 3 that the conservation of the boundary stress tensor provides

the required dynamical balance condition for the solution (3.1). However, the quasilocal

formalism also provides a definition for the action which is related to the thermodynamical

potential G. Thus, it is important to understand how the standard thermodynamics is

changed for the unbalanced black ring solution.

To compute the renormalized action (2.3) we observe that the scalar curvature R

vanishes and so the only contributions are due to the surface terms. We obtain the following

grand-canonical potential:

G ≡ I

β
= β

k2R2

16πG5

λ(1 − λ)(1 + ν)

(1 − ν)2
(4.5)

We also compute the mass and the angular momentum

M =
3k2R2

16G5π

λ(1 + λ)

(1 + ν)
, Jψ =

k2R3

8G5π

(1 + λ)5/2
√
λν

(1 + ν)2
(4.6)
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where k is the periodicity of φ and ψ, namely ∆φ = ∆ψ = k. The event horizon, the

temperature, and the angular velocity are

A =
2k2R3(1 − λ)

√
λ(λ− ν)3/2

(1 − ν)2(1 − ν)
, T =

1

4πR

1 − ν
√

λ (λ− ν)
, Ω =

1

R

(1 − ν)

λ(1 + ν)

√

λ ν

1 − λ
(4.7)

Note that since we removed the bulk conical singularity and kept the one in the boundary

metric, the charges differ from the ones in the original paper [16]. Of course, as the balance

condition is imposed both results for the charges agree.

The balanced black ring solutions satisfy the standard quantum statistical relation

G = M − TS − ΩJψ (4.8)

In our case, the solution is not balanced and we obtain the following generalized quantum

statistical relation:

G− (M − TS − ΩJψ) =
k2R2

16G5π
f [ν, λ] (4.9)

It seems that the extra term, f [ν, λ], should correspond to the stresses due to the conical
singularity in the boundary. This term can be written as

f [ν, λ] =

(

(1 − λ)(3λ+ (λ− 2)ν)

(1 − ν)2
+

2(1 + λ)5/2(1 − ν)ν√
1 − λ(1 + ν)3

− 3λ(1 + λ)

1 + ν

)

(4.10)

It is zero for λ = 2ν/(1 + ν2) which corresponds to the equilibrium condition for the

asymptotically flat black ring.6

5 Discussion

In this work, we used the conservation of the renormalized boundary stress-energy ten-

sor [12] to obtain the equilibrium condition for a general (thin or fat) black ring solution.

This closes a gap left unanswered in the previous literature that dealt just with the thin ring.

We have also investigated the role of stresses in the thermodynamics of the unbal-

anced solutions and proposed a generalized quantum statistical relation for the unbalanced

black ring.

The role of the spatial stress was already pointed out by Brown and York [1] where

a discussion on the thermodynamics of static black holes with respect to a boundary at

finite r = R = constant (in the bulk) was presented. They provided an interpretation for

the trace of spatial stress as a surface pressure. A straightforward generalization of this

definition to (general) unbalanced solutions when the boundary is at infinity seems unlikely

and we leave a detailed analysis of this non-trivial issue for future work.

The main goal of this work was to understand how the proposal of [13], that the

dynamical balance of a thin black ring is related to the conservation of the stress tensor,

can be extended to a general black ring solution. However, to reach this goal, we have

6Note that all the other roots of f [ν, λ] = 0 that satisfy the condition 0 ≤ ν < λ < 1 do not correspond

to (standard) asymptotically flat metrics.
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used a slightly different method, namely the quasilocal formalism supplemented with the

counterterms. The advantage of this method is that the problems associated with the

background subtraction are avoided. Also, one can compute the action (on the Euclidean

section) not just the conserved charges and so this method provides a complete way to

study the thermodynamics.

A concrete example that was extensively studied in the literature was a black string

with boundary conditions that permit variations of its length. The first law in this case

can be expressed as

dM = TdS + ΓdL (5.1)

where Γ is the tension (it is proportional to τzz component of the spatial stress) and L is

the length of the string.7

It seems that the only component of the spatial stress which plays a role in ther-

modynamics is τzz, where z is the direction along the string. Intuitively, one can easily

understand that this component of the stress tensor is related to the tension of the string.

However, it is not so obvious why the other components of the spatial stress do not play

any role. In fact, one expects that when the boundary is at a finite distance in the bulk the

analysis of Brown and York should also apply to black string and so all the components

of the spatial stress should play a role. However, when the boundary is pushed to infinity

the only relevant contribution is coming from the τzz component.

A connection between black strings and (thin) black rings was pointed out in [16, 17].

That is the equilibrium condition for the (thin) black ring is equivalent to a vanishing

tension of the black string. In other words, the only black strings that are obtained as a

limit from black rings are the tensionless ones. This fact was further explored in [13, 15]

and it was found that this connection is more subtle: the equilibrium condition can be

obtained from the conservation of the stress-energy tensor. We have explicitly checked

that the equilibrium condition for a general black ring solution can be obtained from the

conservation of the renormalized boundary stress tensor.

By providing a generalized quantum statistical relation for the unbalanced black ring

we also made a step in understanding the thermodynamics of unbalanced solutions. We

have reached a similar conclusion as in [31] for extended objects. In our case the strain

tensor encodes the modifications in the shape and size of the boundary metric. It is

important to note, though, that our proposal can be used not just for extended objects

(e.g., black strings), but also for more general (unbalanced) solutions.

As a final comment, we note that the quasilocal formalism supplemented with coun-

terterms is a very robust method to study the thermodynamics of black objects and it may

be useful in understanding the holography in flat space.

7Since the mass is proportional to L, at first sight, the new term in the first law seems problematic.

However, one can see that for holding a finite horizon area the mass parameter (that is the monopole in a

multipoles expansion of gtt component of the metric) must be varied in a precise way as L is varied. Thus,

to get the correct first law one should express first the mass in terms of the horizon area and the length L

as independent variables [31].
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A Stress tensor for boosted black string

A simpler perhaps but more intuitive example to understand the boundary stress tensor is

the boosted black string

ds2 = −f̂
(

dt − r0 sinhσ cosh σ

r f̂
dz

)2

+
f

f̂
dz2 +

dr2

f
+ r2(dθ2 + sin2 θ dφ2) (A.1)

where

f = 1 − r0
r
, f̂ = 1 − r0 cosh2 σ

r
(A.2)

The non-trivial components of the boundary stress tensor for a black string with a

boost (parametrized by σ) in five dimensions are

τtt =
1

8πG5

(

−r0
2

(1 + cosh2 σ)
1

r2
+ O(1/r3)

)

,

τtz =
1

8πG5

(

−r0
2

cosh σ sinhσ
1

r2
+ O(1/r3)

)

, (A.3)

τθθ =
1

8πG5

(

−5

8

r20
r

+ O(1/r2)

)

,

τφφ =
1

8πG5

(

−5

8

r20
r

sin2 θ + O(1/r2)

)

,

τzz =
1

8πG5

(

r0
2

(1 − sinh2 σ)
1

r2
+ O(1/r3)

)

The boundary stress tensor also satisfies the conservation law Diτij = 0. In this case the

covariant derivative is with respect to the following asymptotic black string metric (instead

of (2.8) for black ring)

ds2 ≃ −dt2 + dr2 + r2(dθ2 + sin2 θ dφ2) + dz2 (A.4)

and the only non-trivial covariant derivative is

Diτiθ = [sin θ ∂θ (sin θ τθθ) − cot θ τφφ](sin θ)
−2 (A.5)

Replacing (A.3) in the latter equation it is possible to check that the boundary stress tensor

is indeed covariantly conserved for any value of the parameters in the solution.
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